Dedekind zeta motives for totally real number fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPLICIT UPPER BOUNDS FOR THE RESIDUES AT s = 1 OF THE DEDEKIND ZETA FUNCTIONS OF SOME TOTALLY REAL NUMBER FIELDS

— We give an explicit upper bound for the residue at s = 1 of the Dedekind zeta function of a totally real number field K for which ζK(s)/ζ(s) is entire. Notice that this is conjecturally always the case, and that it holds true if K/Q is normal or if K is cubic. Résumé (Bornes supérieures explicites pour les résidus en s = 1 des fonctions zêta de Dedekind de corps de nombres totalement réels) N...

متن کامل

Real zeros of Dedekind zeta functions of real quadratic fields

Let χ be a primitive, real and even Dirichlet character with conductor q, and let s be a positive real number. An old result of H. Davenport is that the cycle sums Sν(s, χ) = ∑(ν+1)q−1 n=νq+1 χ(n) ns , ν = 0, 1, 2, . . . , are all positive at s = 1, and this has the immediate important consequence of the positivity of L(1, χ). We extend Davenport’s idea to show that in fact for ν ≥ 1, Sν(s, χ) ...

متن کامل

Perfect Forms over Totally Real Number Fields

A rational positive-definite quadratic form is perfect if it can be reconstructed from the knowledge of its minimal nonzero value m and the finite set of integral vectors v such that f(v) = m. This concept was introduced by Voronöı and later generalized by Koecher to arbitrary number fields. One knows that up to a natural “change of variables” equivalence, there are only finitely many perfect f...

متن کامل

On Shintani’s ray class invariant for totally real number fields

We introduce a ray class invariant X(C) for a totally real field, following Shintani’s work in the real quadratic case. We prove a factorization formula X(C) = X1(C) · · ·Xn(C) where each Xi(C) corresponds to a real place (Theorem 3.5). Although this factorization depends a priori on some choices (especially on a cone decomposition), we can show that it is actually independent of these choices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2013

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s00222-012-0444-x